
BATMANN: A Binarized-All-Through
Memory-Augmented Neural Network for Efficient

In-Memory Computing
Yuan Ren*, Rui Lin*, Jie Ran, Chang Liu, Chaofan Tao, Zhongrui Wang, Can Li, Ngai Wong*

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Abstract—The traditional von Neumann architecture suffers
from heavy data traffic between processing and memory units,
which incurs high power and latency. To cope with the booming
use of neural networks on edge devices, a promising way is
to perform in-memory computing through exploiting the next-
generation memristive devices. This work proposes a 2-level resis-
tive random-access memory (RRAM)-based memory-augmented
neural network (MANN), named binarized-all-through MANN
(BATMANN), that is end-to-end trainable and allows both the
controller and memory to be seamlessly integrated onto RRAM
crossbars. Experiments then show the superiority of BATMANN
in doing few-shot learning with high accuracy and robustness.

Index Terms—RRAM, memory augmented, binary, neural
networks, in-memory computing

I. INTRODUCTION

The past decade of escalated advancement in machine
learning (ML) and artificial intelligence (AI) have achieved
unprecedented success in applications such as computer vision
and natural language processing [1], [2]. Deep neural networks
(DNNs) via deep learning have surpassed various traditional
solutions, and spurred the industry to adapt to the ubiquitous
AI technologies. Nonetheless, despite the proliferation of
software-oriented AI algorithms and DNN architectures, their
hardware realization is facing stiff challenges. Existing von
Neumann computing architecture incurs massive data traffic
between processing elements and memory units, resulting in
high power consumption and latency. This is compounded by
the growing need of edge (viz. user-end) AI that is largely
constrained by resource-limited hardware and stringent power
budget. All these are promting the quest for an advanced
microelectronics platform that supports low-power, high-speed
neural networks to sustain the evolution of the AI era.

To this end, in-memory computing on non-volatile memory
(NVM) has emerged as an attractive solution for realizing AI
accelerators, namely, by processing data directly on-site in
memory to minimize data transfer. Various NVM candidates
include the resistive random-access memory (RRAM), phase-
change memory (PCM), magnetic random-access memory
(MRAM), etc. Among these, RRAM cells show the best
reliability and compatibility with complementary metal-oxide-
semiconductor (CMOS) processes, and can be readily arranged
into crossbars for performing matrix-vector product to largely

*YR {renyuan@eee.hku.hk}, RL and NW contributed equally to this work.

speedup AI inference via analog computing [3]. Such advan-
tages render RRAM a promising candidate for in-memory
computing to fuel the next-generation AI.

Building upon the recent demonstration of a memory-
augmented neural networks (MANN) stitching DNN and hy-
perdimensional computing for few-shot learning [4], this work
provides two major advancements:

• A binarized-all-through MANN, called BATMANN, is
proposed that uses simple 2-level RRAM cells and allows
seamless integration of both the controller (encoder) and
memory unit onto RRAM crossbars. To our knowledge,
BATMANN is the first purely RRAM controller-memory
integration, distinguishing itself from the memory-only
realization in [4].

• It is shown for the first time that state-of-the-art binary
neural network (BNN) design techniques can be adapted
to the end-to-end training of a MANN giving high
output accuracy. This provides high research and practical
insights into next-generation in-memory computing.

II. BACKGROUND

A. Memory-Augmented Neural Network (MANN)

Recurrent Neural Networks (RNNs) are capable of explor-
ing the temporal dependencies in input sequences of variable
lengths. However, as the input length increases, RNNs suffer
from vanishing gradients, exponential growth in number of
parameters and costly computation due to increased mem-
ory size. Long Short-Term Memory (LSTM) [5] and Gated
Recurrent Unit (GRU) [6] have been developed to alleviate
the issue, but both embed the history into a single hidden
vector as in RNNs, which means they still have difficulties
searching through past memories to make a prediction. MANN
is proposed to alleviate the gradient vanishing problem as
it satisfies two criteria [7]: that the information stored in
the memory is stable and element-wise addressable, and the
number of learnable network parameters are not tied with the
size of the memory.

There are two main components in a MANN, namely, a
controller and a memory. The controller can learn how to read
from and write to the memory, while the memory in a MANN
is usually a content addressable memory (CAM) comprising
a key and a value memory. The key memory stores and
compares the learned patterns, while the value memory holds



Signal Processing

(TIAs or ADCs)

G11
+ G11

V1

G21
+ G21

Gn1
+ Gn1

V2

Vi

Vn

I1
+I1

G1n

G2n

Gnn

G11 G12

G21 G22

Gn1 Gn2

G1n

G2n

Gnn

Gbias

V1

Gbias

Gbias

V2

Vi

Vn

Vout1 Vout2 Voutn

R R R

Vbias

R
R R R R

V1

V2

V3

G11

G21

G31

G12

G22

G32

G13

G23

G33

I1 I2 I3

G11

G21

G31

G12

G22

G32

G13

G23

G33

T
V1

V2

V3

I1

I2

I3

T

(c)(b)(a)

Fig. 1: (a) Vector-matrix multiplication computation in an RRAM-based crossbar; (b) Implementation of negative synaptic
weight (double-column approach); (c) Implementation of negative synaptic weight (single-column approach).

the labels. It is noticeable that with CAM, the new information
can be offloaded to the explicit memory without the risk of
overwriting previously learned content, thus making MANN
an excellent candidate for one-/few-shot learning tasks.

B. RRAM Crossbars

An RRAM crossbar/array readily implements the vector-
matrix multiplication (VMM) which constitutes the workhorse
operation in DNN inference. Specifically, Fig. 1(a) depicts a
metal–RRAMs–metal (MRM) stack where the two-terminal
RRAM cells are programmed with different conductance val-
ues Gij’s to encode the matrix weights in a DNN layer, e.g., a
convolutional neural network (CNN) or fully connected (FC)
layer. The voltages Vi’s are parallelly fed into each row as
inputs, producing the outputs Ij’s summed on each column ac-
cording to the Ohm’s law and Kirchhoff’s law. Such hardware-
based analog computing can efficiently process VMM in a
single pass. The currents sensed from different columns are
then collected via transimpedance amplifiers (TIAs) or analog-
digital converters (ADCs) for back-end signal processing. In
practice, each layer in a pretrained DNN model can be mapped
onto a tiled architecture of RRAM crossbars [8], and the same
im2col framework is applied to transform both CNN and FC
operation into standard VMM format for acceleration on the
crossbar-based in-memory computing platform.

III. BATMANN
A. Software: Design Algorithm

We harvest the latest development in binary neural net-
work (BNN) training algorithms, namely, XNOR-Net [9] and
RBNN [10], for designing BATMANN using 2-level RRAM
cells throughout. In particular, XNOR-Net attempts to min-
imize the quantization error arising from mapping the full-
precision weights to their (bipolar, i.e., ±1) quantized levels
with a learnable per-channel scaling factor. Whereas RBNN
further accounts for the angular bias between the full-precision
and bipolar weights and tries to minimize it during training.

To concisely describe the BATMANN design flow, we use
Xt and Xv to denote the training and validation datasets,

respectively. Their corresponding labels are Yt and Yv . The
training dataset Xt is constructed by items from M classes,
and each class contains a few samples. It is worth noting that
M is generally large, while the number of samples in each
class is often scarce and far from being ample as in MNIST
or ImageNet. For example, in the omniglot [11] dataset widely
used for few-shot learning (FSL), it contains 1623 characters,
each with only 20 samples written by different people. For
Xv , it has the same structure as Xt, but the classes in it are
often disjoint with Xt.

Algorithm 1 describes the BATMANN training on software.
For the controller in our proposed BATMANN, we highlight
that its last FC layer is also binarized rather than 8-bit or full-
precision as in most BNNs. In addition, when making pre-
dictions during the learning phase, we use the dot product to
calculate the similarity and choose standard absolute function
to be the sharpening function (Algorithm 1, line 8) instead of
cosine similarity and soft absolute, as employed in [4]. The
whole workflow and architecture of BATMANN are visualized
in Fig. 2, the binarized last FC layer renders the BATMANN
hardware-centric and homogeneous to 2-level RRAM cells,
without loss in output accuracy as will be demonstrated by
experimental results in Section IV.

B. Hardware: Circuit Specifics

A challenge when implementing a DNN model on RRAM-
based crossbars is that the synaptic weights in a DNN layer
can be positive or negative, whereas the conductance of an
RRAM cell is always physically positive. Various efforts [12],
[13] have derived different circuit schemes to implement
negative synaptic weights, which can be classified into the
double-column (DC) and single-column (SC) approaches. In
the DC approach, each synaptic weight is programmed into
an RRAM cell pair, whose signed values are encoded into
G+

ij and G−
ij , respectively (Fig. 1(b)). For the first differential

columns, the output current of the positive column (I+1 ) and
negative column (I−1 ) equals the dot product of the voltage
vector Vi by the conductance G+

i1 and G−
i1 respectively. The

subtraction of the differential pair (I+1 − I
−
1 ) can be obtained



Fig. 2: The architecture of the proposed BATMANN implemented on RRAM, which contains not only the key-value memory
as in [4] but also a binarized controller, all realizable with 2-level RRAM cells. It is worth noting that: 1) only the first layer
of the controller is 8/32-bit, whereas the remaining layers (including the last FC layer) are all binarized; 2) the similarity
measure and the sharpening function are consistent during learning and inference phases, without gradient approximator (e.g.,
softabs [4]) during backpropagation. These unique features in BATMANN permit neat alignment between software training
and hardware implementation, and deliver higher system accuracy.

Algorithm 1 BATMANN Training
Input: Training data {Xt, Yt}, validation data {Xv, Yv}, a randomly
initialized controller with parameters Θ, learning rate η, number
of ways m (a subset of the total number of M classes), number
of shots n, number of queries in each class nq (in learning phase)
and nv (in validation), training episode Nt, validation episode Nv ,
validation interval Ni, and validation threshold t.
Output: A binarized mature controller with trained parameters Θ̂.
1: for i = 1, · · · , Nt do
2: XS

t ←− Sample m classes from Xt, and from each class
sample n items to generate the support set.

3: Y S
t ←− Get the corresponding one-hot labels.

4: XQ
t ←− For each class, randomly choose nq items from the

remaining samples to obtain the query set.
5: Y Q

t ←− Get the corresponding one-hot labels.
6: FS

t , FQ
t ←− Get the bipolar features by passing XS

t and XQ
t

through the binarized controller.
7: Key-Value Memory ←− Store FS

t and Y S
t

8: Ŷ Q
t ←− Predict the labels by comparing the similarities be-

tween FQ
t and FS

t through dot product and absolute function.
9: L←− Use Ŷ Q

t and Y Q
t to calculate the loss, using XNOR or

RBNN training scheme.
10: Θ := Θ− η · ∂L

∂Θ
, Θ̂ := Θ←− Update the parameters.

11: if mod(i,Ni) == 0 then
12: Repeat lines 2 to 8 for Nv times, but use Xv and Yv to

generate the support and query sets. # Validation
13: Accv ←− Calculate the accuracy.
14: if Accv > t then
15: break
16: end if
17: end if
18: end for

from I+1 − I−1 =
∑n

i=1 Vi(G
+
i1 − G−

i1). In practice, the
conductance values G+

ij , G
−
ij ∈ [Gmin, Gmax] are programmed

by an extra large voltage, such that the value of Gij ∈
[Gmin − Gmax, Gmax − Gmin] is retained afterwards due to
its memristive nature. The subtracted current is then sensed
with a differential transimpedance amplifier (TIA) or analog-
to-digital converter (ADC) for back-end signal processing.

Compared with the DC approach, half of the total RRAM

devices are saved in the SC approach at the expense of extra
peripheral analog circuits and one additional RRAM column
as the bias function (Fig. 1(c)). The inputs of each layer are
respectively delivered into bias RRAM cells. Meanwhile, the
opposite terminals of bias RRAMs are collected together and
connected to the negative terminal of a closed-loop operational
amplifier. At the back-end of the RRAM crossbar, owing
to Kirchhoff’s law, the output current of each column is
delivered into its own inverting amplifier for current-to-voltage
conversion. Without considering nonidealities of the amplifier,
the output voltage Voutj on the column j can be obtained
from Voutj =

∑n
i=1 Vi(Gbias −Gij)R, which shows that the

output of each column contains a (Gbias −Gij)R factor that
allows it to achieve negative synaptic weights on hardware by
leveraging the conductance Gbias of the bias RRAM cells.

IV. EXPERIMENTS

We trained the proposed BATMANN using PyTorch. All ex-
periments were run on two Tesla V100-SXM2 Graphics cards,
each with 32GB frame buffer. Table I shows the controller
evaluation results on 20-way 5-shot FSL task based on the
Omniglot dataset [11] under different learning and inference
schemes. The first experiment is our own implementation of
the learning and inference phases described in [4] whose
codes are not released. Using it as the baseline, we observe
that when using XNOR as the binarized controller training
scheme, the accuracy after learning only slightly decreases
by 0.07%. Comparing the third experiment with the baseline,
using RBNN as the training scheme in the learning phase, the
accuracy increases by 0.74%, indicating BNNs can extract the
features well, in fact even better than regular full-precision
controllers in this case. Experiments 3 and 5 are under the
training settings described in Algorithm 1. It is worth noting
that BATMANNX controller, which uses dot product and
regular absolute not only in inference but also in the learn-
ing (viz. backpropagation) phase, has the best performance
96.30%. While the classification accuracy of BATMANNR



No. Learning Inference Acc. (%)Controller Key Similarity Func Controller Key Similarity Func

1 FP32 FP32 Cosine Softabs FP32 Bipolar Dot Abs 95.56
2 XNOR [9] Bipolar Cosine Softabs Bipolar Bipolar Dot Abs 95.49
3 BATMANNX Bipolar Dot Abs Bipolar Bipolar Dot Abs 96.53
4 RBNN [10] Bipolar Cosine Softabs Bipolar Bipolar Dot Abs 96.30
5 BATMANNR Bipolar Dot Abs Bipolar Bipolar Dot Abs 5.00

TABLE I: Controller evaluation results under different learning
and inference schemes. Func: Sharpening function. FP32: full-
precision controller. XNOR (RBNN): binarized controller with
8-bit (FP32) first conv layer and 8-bit last FC layer training in
the XNOR (RBNN) scheme. BATMANNX (BATMANNR):
binarized controller with 8-bit (FP32) first conv layer and
binarized last FC layer training in the XNOR (RBNN) scheme.

controller training under the same setting only scores 5.00%,
i.e., a significant drop. BATMANNR fails to converge as
standard absolute function, an approximation of the softabs,
fails to update the rotation matrix to minimize the angular
bias reaching the optimal parameters. Based on the above
observations, we indicate that BATMANN (using XNOR) can
have better performance than the full-precision controller, and
it is much neater and hardware-centric.

When deployed on RRAM crossbars, the decline of perfor-
mance is inevitable owing to the device variation of real-world
RRAM cells. Subsequently, it is desirable to take the non-
idealities into account and characterize the robustness of our
design. We employ MemTorch [14] to map BATMANN onto
RRAM crossbars to evaluate its performance under device un-
certainties. Specifically, the DC approach is adopted (cf. Fig. 1
& Section III-B), but with a 1-Transistor-1-Resistor (1T1R)
RRAM cell structure [15]. At the device level, the memristance
Ron = 1/Gmax = 1kΩ and Roff = 1/Gmin = 10kΩ are set
as in [15]. Based on the Omniglot dataset for FSL, the pro-
posed BATMANNX network achieves a maximum accuracy
of 96.53% for 20-way 5-shot. On top of BATMANNX , we
simulate the effect of stochastic, normally distributed device
variation on the network classification accuracy. Fig. 3 plots
the trend of accuracy degradation with an increased standard
deviation σ from 0 to 1400 with respect to the memristance
of each RRAM cell. It is seen that the output accuracy
remains almost unchanged for σ up to 600, and drops sharply
when σ goes beyond 1000 (mainly due to the programming
failure of Ron). This further confirms the robustness of the
proposed controller-memory-in-one BATMANN, on a par with
the memory-only MANN in [4].

V. CONCLUSION

This paper has proposed a memory augmented neural net-
work (MANN) wherein both the encoder and memory units
are end-to-end trained and realized with RRAM crossbars
using simple 2-level cells. Such first-of-its-kind binarized-all-
through MANN (BATMANN) provides a promising solution
for in-memory AI computing. Our numerical examples on few-
shot learning have demonstrated the superiority of BATMANN
in terms of system accuracy and robustness.

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

79.56

94.78 94.21 94.17 93.37 92.39 89.14

46.32

33.56

5.00

66.49

81.45

90.99

Sigma σ

A
c

c
u

ra
c

y
 [

%
]

Fig. 3: Accuracy vs. RRAM device variation.

VI. ACKNOWLEDGEMENT

This work is support in part by the General Research Fund
(GRF) project 17206020, and in part by ACCESS – AI Chip
Center for Emerging Smart Systems, Hong Kong SAR.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, pp. 770–778, 2016.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, “Fully hardware-implemented memristor convolutional neural
network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020.

[4] G. Karunaratne, M. Schmuck, M. L. Gallo, G. Cherubini, L. Benini,
A. Sebastian, and A. Rahimi, “Robust high-dimensional memory-
augmented neural networks,” Nat. Commun., vol. 12, 2021.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[7] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in ICML,
pp. 1842–1850, PMLR, 2016.

[8] Q. Wang, X. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A deep
neural network accelerator based on tiled rram architecture,” in IEEE
IEDM, pp. 14–4, IEEE, 2019.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
ECCV, pp. 525–542, Springer, 2016.

[10] M. Lin, R. Ji, Z. Xu, B. Zhang, Y. Wang, Y. Wu, F. Huang, and C.-W.
Lin, “Rotated binary neural network,” in Proc. NeurIPS, pp. 7474–7485,
2020.

[11] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[12] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification
by memristive crossbar circuits using ex situ and in situ training,” Nat.
Commun., vol. 4, no. 1, pp. 1–7, 2013.

[13] S. N. Truong and K.-S. Min, “New memristor-based crossbar array
architecture with 50-% area reduction and 48-% power saving for
matrix-vector multiplication of analog neuromorphic computing,” JSTS:
J. Semicon Tech. & Sci., vol. 14, no. 3, pp. 356–363, 2014.

[14] C. Lammie, W. Xiang, B. Linares-Barranco, and M. R. Azghadi,
“Memtorch: An open-source simulation framework for memristive deep
learning systems,” arXiv preprint arXiv:2004.10971, 2020.

[15] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan,
J. P. Strachan, et al., “In situ training of feed-forward and recurrent
convolutional memristor networks,” Nat. Mach. Intell, vol. 1, no. 9,
pp. 434–442, 2019.


